Search results

Search for "low energy" in Full Text gives 251 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • modification – proof of principle simulation Low-energy electrons are assumed to be most effective in the dissociation process. The reason is that low-energy electrons interact more efficiently with molecules than high-energy electrons. One dissociation channel is dissociative electron attachment (DEA), which
  • . The SE1 are distributed close to the primary beam, while the low-density SE2 are spread out over a much larger area. For simplicity, the spatial distribution of low-energy electrons around the point of impact of the primary beam with the substrate is assumed to be of a Gaussian shape. Depending on the
  • MeCpPtMe3. Then the sample was tilted by 52° and milled with a gallium FIB. The cross-sectional profile was imaged at low energy (2 keV) with the SE detector. SE image of a deposited FEBID carbon line, top view (a) and FIB cross section (b). The line was deposited from a dodecane precursor on a silicon
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • Karl Rothe Nicolas Neel Jorg Kroger Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany 10.3762/bjnano.15.37 Abstract Low-energy argon ion bombardment of graphene on Ir(111) induces atomic-scale defects at the surface. Using a scanning tunneling microscope, the two
  • molecular precursor C2H4 (purity: 99.9%) at a partial pressure of 10−5 Pa for 120 s [25][26]. Atomic-scale defects were created by bombarding graphene-covered Ir(111) with low-energy (140 eV) Ar+ ions (purity of the Ar gas: 99.999%) [27][28][29][30] at room temperature for 5 s followed by annealing (900 K
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • –matter interaction in low-energy regimes is well understood; however, a few empirical additions have been taking place in the formulism based upon the experimental observations [29][30]. A large group of theoreticians have contributed to the already existing classic description given by Bradley and
  • chosen from the literature [37][38] as 3, 5, 7, and 9 × 1017 ions/cm2 to induce complete amorphization within the two surfaces up to the ion range. The ion irradiation experiment was performed in the 90-degree beam line dedicated for materials science experiments in the Low-Energy Ion Beam (LEIB
  • material, taking into account the ion straggling. For Si and Ge, a damage peak is exhibited around ≈75 nm , and the damaged layer extends up to a depth of ≈110 nm, which is consistent with the range of ions calculated with the SRIM code [39][43]. Here, the low-energy part of the spectrum continuously
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Investigating structural and electronic properties of neutral zinc clusters: a G0W0 and G0W0Г0(1) benchmark

  • Sunila Bakhsh,
  • Muhammad Khalid,
  • Sameen Aslam,
  • Muhammad Sohail,
  • Muhammad Aamir Iqbal,
  • Mujtaba Ikram and
  • Kareem Morsy

Beilstein J. Nanotechnol. 2024, 15, 310–316, doi:10.3762/bjnano.15.28

Graphical Abstract
  • have been carefully analyzed with the VESTA software, and low-energy isomers were refined from more than 600 structures (ca. 22 generations in CALYPSO). The geometric optimization of all clusters for a size range of n = 2–15 was performed in two steps: (i) structure search and initial geometric
PDF
Album
Full Research Paper
Published 15 Mar 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • method for nanofabrication such as FIB, which also happens to cover the low-energy interaction regime. The method is widely available as a complement to scanning electron microscopes. Focused ion beams allow for both subtractive and additive nanoscale manufacturing [31] and can also be used for chemical
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Exploring disorder correlations in superconducting systems: spectroscopic insights and matrix element effects

  • Vyacheslav D. Neverov,
  • Alexander E. Lukyanov,
  • Andrey V. Krasavin,
  • Alexei Vagov,
  • Boris G. Lvov and
  • Mihail D. Croitoru

Beilstein J. Nanotechnol. 2024, 15, 199–206, doi:10.3762/bjnano.15.19

Graphical Abstract
  • of the quasiparticle wave function for a specific disorder realization with a strength V = 2 and correlation degrees α = 0, 1, and 2. It becomes apparent that in the case of uncorrelated disorder, low-energy excitations form small islands, indicating their localization on superconducting islands
PDF
Album
Full Research Paper
Published 12 Feb 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • involving Galleria mellonella larvae. Additionally, we investigated the insecticidal efficacy of monoterpenes against the mosquito Aedes aegypti, the primary dengue vector, via larval bioassay. Employing a low-energy approach, we successfully generated nanoemulsions. The cymene-based nanoemulsion exhibited
  • [14]. NEs can be obtained through two general approaches, that is, high-energy methods and low-energy methods. The high-energy methods are characterized by using equipment such as sonicators, high-speed homogenizers, and high-pressure homogenizers, which provide high energy input during processing
  • , leading to the generation of dispersed material on a nanoscale [15]. The low-energy methods are characterized by the use and control of the chemical energy of the system in the formation of droplets on the nanoscale. A crucial point is that these systems can be obtained at low cost and with eco-friendly
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • field-effect transistor (JFET) or SQUID readout. The principal advantage of these CEB-based detectors over TESs [19] is the effect of direct electron cooling, when electrons with high energy are removed from a nanoabsorber, leaving only the quasiparticles with low energy and, accordingly, low electron
PDF
Album
Full Research Paper
Published 04 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • homogenization); (2) low-energy methods, which requires the precipitation of nanoparticles from homogeneous systems (such as microemulsions); and (3) methods based on organic solvents (emulsification–diffusion method) [35]. Liposomes are vesicles composed of a phospholipid and cholesterol with an aqueous core
PDF
Album
Supp Info
Review
Published 03 Jan 2024

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • yielded deposits with high gold content, ranging from 45 to 61 atom % depending on the beam current and on the cleanliness of the substrates surface. Keywords: dissociative electron attachment; dissociative ionization; focused-electron-beam-induced deposition (FEBID); gold deposit; low-energy electrons
  • . In FEBID, the irradiation of the substrate with a high-energy focused electron beam results in elastic and inelastic electron scattering, including ionizing events. The latter leads to the production of numerous reactive, low-energy scattered and secondary electrons. These play a significant role in
  • the precursor decomposition and thus in the deposit formation [16]. Hence, the decomposition of the precursor molecules is not only effectuated by the primary electron beam. In fact, the reactivity of these low-energy electrons [24] may even determine the fragmentation of the precursor molecules
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Density functional theory study of Au-fcc/Ge and Au-hcp/Ge interfaces

  • Olga Sikora,
  • Małgorzata Sternik,
  • Benedykt R. Jany,
  • Franciszek Krok,
  • Przemysław Piekarz and
  • Andrzej M. Oleś

Beilstein J. Nanotechnol. 2023, 14, 1093–1105, doi:10.3762/bjnano.14.90

Graphical Abstract
  • modelled by the supercell geometry. Au-fcc(011)/Ge(001) As already discussed, there are several possibilities of building a low-energy Au-fcc(011)/Ge(001) heterostructure, and here we compare their calculated interface energy values and structural parameters. First, we join the Au-fcc(011) plane oriented
  • . Small displacements of atoms from initial positions are observed in the interface layer (rAu = 0.62 and rGe = 0.22 Å), and the distance between Ge and Au interfacial planes is equal to 1.78 Å (again, very similar to our first low-energy heterostructure). These numbers suggest that variant C is a good
PDF
Album
Full Research Paper
Published 15 Nov 2023

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • Nowadays, organometallic complexes receive particular attention because of their use in the design of pure nanoscale metal structures. In the present work, we present results obtained from a series of studies on the degradation of metal(II) bis(acetylacetonate)s induced by low-energy electrons. These slow
  • complexes, it is desirable to investigate the physical chemistry, in particular, the processes induced by the interaction of these molecular systems with low-energy electrons. We performed a series of collision experiments of low-energy electrons with metal bis(acetylacetonate)s, ML2, where M and L
  • pathways (e.g., branching ratio), will be helpful for using this family of organometallic compounds. Results and Discussion The interaction of low-energy electrons with gaseous compounds ML2 (M: Mn, Co, Ni, Cu, and Zn; L: acac) produces the parent anion [ML2]− and the fragment anion [L]− as the predominant
PDF
Album
Full Research Paper
Published 26 Sep 2023

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • mechanism of CO2 on MOFs featuring OMSs. Wu et al. revealed that the interactions between the OMSs of Mg-MOF-74 and HKUST-1 and CO2 molecules are primarily of physical nature [24]. This type of adsorption mechanism offers the advantage of low energy requirements in material regeneration. Another significant
PDF
Album
Review
Published 20 Sep 2023

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • . Furthermore, several domains of nanotechnology and industry use nanoscaled samples that need to be controlled to an extreme level of precision. To reduce the irradiation-induced damage and to limit the interactions of the ions with the sample, low-energy ion beams are used because of their low implantation
  • depths. Yet, low-energy ion beams come with a variety of challenges. When such low energies are used, the residual gas molecules in the instrument chamber can adsorb on the sample surface and impact the ion beam processes. In this paper we pursue an investigation on the effects of the most common
  • . Keywords: angle dependency; argon; contamination; energy dependency; ion bombardment; low energy; molecular dynamics; silicon; simulations; water; Introduction Low-energy ion beams offer substantial improvements and possibilities to reduce the damage production on the surface of samples [1][2]. In recent
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • with transparency, easy tuning, and low energy requirements of the bottom-up synthesis, opens the way for the development of novel biohybrid systems with a wide range of applications, from biological preservation of living cells to the development of novel whole-cell bioinorganic catalytic materials
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • Santiago Grijalvo Carlos Rodriguez-Abreu CIBER-BBN, ISCIII, Jordi Girona 18–26, 08034 Barcelona, Spain Instituto de Quimica Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18–26, 08034 Barcelona, Spain 10.3762/bjnano.14.29 Abstract The formulation of nanoemulsions by low-energy strategies
  • research on the fabrication of polymer nanoparticles from low-energy nanoemulsions, focusing on phase inversion composition. We particularly emphasize their biomedical applications as drug carriers. 2 Nanoemulsions Nanoemulsions are constituted by nanoscale droplets (20–200 nm) dispersed in a continuous
  • -called high-energy methods (also called work-based methods [5]), this energy is supplied by external mechanical means, such as in high-pressure homogenizers or from ultrasound devices, with high dissipation (mostly in the form of heat) and, therefore, low energy efficiencies. In contrast, the so-called
PDF
Album
Review
Published 13 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • -precipitation, and aerosol-spraying) have been widely used for the synthesis of various nanostructured materials due to their low cost, low energy requirements, and ease of control of the solution parameters to meet the growing demand for efficient photocatalysts that can be produced on a large industrial scale
PDF
Album
Review
Published 03 Mar 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • the use of upconversion nanoparticles to convert NIR to shorter-wavelength light for photoreactions. These nanoparticles usually contain rare-earth metal ions, which have long-living excited states. Thus, they achieve sequential energy absorption and convert two or more low-energy (NIR) photons into
PDF
Album
Review
Published 09 Feb 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • problems concerning increasing energy demands, a revolutionary solution is needed with two goals to be simultaneously reached: energy saving and increase in the capability of novel computers. The future of high-performance computing with low energy consumption is clearly associated with technologies with
PDF
Editorial
Published 10 Jan 2023

Cooper pair splitting controlled by a temperature gradient

  • Dmitry S. Golubev and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2023, 14, 61–67, doi:10.3762/bjnano.14.7

Graphical Abstract
  • conducting channel in both junctions introduced the function and employed Fermi distribution functions for electrons and holes in the normal leads Equation 11 defines the low-energy cross-correlated current noise in the presence of a temperature gradient and represents the main general result of the present
PDF
Album
Full Research Paper
Published 09 Jan 2023

Numerical study on all-optical modulation characteristics of quantum cascade lasers

  • Biao Wei,
  • Haijun Zhou,
  • Guangxiang Li and
  • Bin Tang

Beilstein J. Nanotechnol. 2022, 13, 1011–1019, doi:10.3762/bjnano.13.88

Graphical Abstract
  • total optical loss is assumed to be 23.3 cm−1, including a 14.3 cm−1 waveguide loss [27] and a 9 cm−1 mirror loss for a waveguide refractive index of 3.4. Although there are many bound states in the active region, most electrons remain in several low energy levels. So seven confined subbands are
PDF
Album
Full Research Paper
Published 23 Sep 2022

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • energy required to break atomic bonds in hydrocarbons can be quite low (less than 5 eV) [19]. Therefore, even low-energy secondary electrons (SE), which are released from the surface around the point of impact of the EB, are capable of dissociating hydrocarbon molecules. Secondary electrons are usually
PDF
Album
Full Research Paper
Published 22 Sep 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • sputtered largely depends on the incidence angle. This fraction is the largest for incidence angles between 70 and 80° defined with respect to the sample surface. Overall, it changes from 25% to 65%. Keywords: angle dependency; argon ions; contamination; focused ion beams; ion bombardment; low energy
  • . Depending on the application, the ion beam energy is in the range of 10 to 30 keV when small spot sizes are required (i.e., spot sizes in the nanometre range) and at a few keV or even in the sub-keV range when low surface damage or minimized atomic mixing is required. One example is low-energy depth
  • milling is essential because most samples analysed in high-precision instruments are prepared using this method. This can be best achieved using low-beam energies, ideally in the sub-keV range [18], since low-energy ion beams (under 500 eV) produce a thinner amorphous layer due to their lower penetration
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • sample. The full width at half maximum (FWHM) energy resolution of the UPS experiment is 0.05 eV. Results and Discussion Figure 1a and Figure 1b report the structural characterization of the ZnTPP/Fe(001)–p(1 × 1)O sample in the reciprocal and in direct space, respectively. The low-energy electron
PDF
Album
Full Research Paper
Published 30 Aug 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • electron energy loss spectroscopy (HREELS) [53][54], Raman spectroscopy [55], and low-energy electron microscopy (LEEM) [56] as well as by theoretical analysis [57][58][59]. It is now well established that electron irradiation leads to cleavage of C–H and S–H bonds, followed by the formation of C–C bonds
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022
Other Beilstein-Institut Open Science Activities